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Indexing Text Documents

• Important problems in Information Retrieval (IR)

Given some keywords find relevant documents
Given a document find its similar documents
Identify major themes underlying a document corpus
Classify documents according to these themes

• Text as Data
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Latent Dirichlet Allocation (LDA)

• LDA is a probabilistic generative model:
Assumes a procedure to generate a document using simple probabilistic rules:

(1) Choose a distribution over T topics
(2) For each word position in the document,

choose a topic randomly
choose a word from the topic’s distribution over the vocabulary
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LDA : Pólya Urn Interpretation

(1) Let T be the number of topics
(T is known and fixed while generating documents).

(2) A topic urn:

It contains NV types of balls of the same size
(NV is the vocabulary size of the corpus D)
Topics are assumed to be fixed while generating documents
and to be inferred at the time of inference.

(3) A document urn:

It contains balls of T different colours,
such that each colour represents a topic.
Initially, αt balls of colour ct are added to the urn
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LDA : Key Assumptions

• Words that frequently co-occur with each other are
related to the same subject.
Call such clusters of co-occurring words “topics (or concepts)”.

• Each document in the corpus exhibits the topics to varying degrees.
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Overview of LDA

A set of topics on medical-space newsgroup corpus:
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Case Study: Community Earth System Model (CESM)
discussion forum
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Community Earth System Model (CESM)

• Global climate model

• Facilitates simulations of Earth’s climate states

• CESM Discussion Forums: Forums (∼7000 posts since 2004)
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Example LDA Topics

Id Most probable words of a topic Manually assigned
label

0 component svn download line calling input clm
compset case missing run directory check input data
setting clean shr strdata print externals failed git

Version Management

1 setenv nthreads memory npes invalid netcdf init initial-
ize join ids seq comm printcomms name echo comp
argument explicit seq comm joincomm

Parallel computing

2 run clm files case forcing simulation compset year cmip
restart xmlchange want set initial years output ssp
change start land atmospheric said spinup b.e

CMIP and SSP

3 configure include gmake dlinux directory compiler pio
checking mpif dfortranunderscore build test

Installing and setting
up CESM

5 unknown reference undefined cesm.exe netcdf text line
function lib indices ccsm.exe routine increasing...will
source netcdf mod nf main forrtl image

Errors while running
models

7 ocean ice grid sst pop cice sea files land output change
values set domain forcing read som compset variables

Ocean modeling

12 code call variable subroutine module add end line vari-
ables procedure parameter number scam mean source
history integer bug write

Source code related
changes
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Topic 2 : CMIP and SSP
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run clm files case forcing simulation compset year cmip1 restart xmlchange want
set initial years output ssp2 change start land atmospheric said spinup b.e

1https://en.wikipedia.org/wiki/Coupled Model Intercomparison Project
2https://en.wikipedia.org/wiki/Shared Socioeconomic Pathways
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Topic 1 : Parallel computing
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Topic 3 : Installing and setting up CESM
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Topic 5 : Errors while running models
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Topic 12 : Source code related changes
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component svn download line calling input clm compset case missing run directory
check input data setting clean shr strdata print files externals failed server
protocol git list cime build sandbox create newcase description inputdata cam
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Word Frequencies and Topics

Topic ID Most probable words in the topic
0 and cam model discusscesm version waccm not data ccsm use

available
2 data not forcing error model date atm and xmlchange clm files
8 clm and surface not land data model soil ctsm your pft
12 error and warning model process message not nan problem

running called
13 ice ocean pop and grid cice sea not model forcing land
16 and data files restart initial sst model cam cmip compset
19 and not surface radiation temperature flux solar heat values

variables model

• Topics are dominated by stop-words such as:
model, data, and, not, files, etc.
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Word Frequencies and Topics

• Due to a high frequency of stop-words, they are likely to dominate topics

• it will also be true for domain-specific stop-words
(e.g. words like model, data, files in CESM corpus)
should not be a stop-word?

• However, we expect topics which are different from each other and
specific to a certain concept or theme

• Stop-word removal is an important text-processing step
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Hands-on

• An implementation of LDA in Javascript + D3
https://mimno.infosci.cornell.edu/jsLDA/index.html
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• Thank you for your attention!


